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Commercial aircraft designs have 
begun to plateau in fuel efficiency
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Figure 9.1: The fuel burn per passenger per unit distance of new aircraft over time,
as a percentage of the value in 1960. The last 5 decades have seen a 50 %
reduction, but progress has stalled in the last 2 decades. Source: the
International Council on Clean Transportation [2].

9.1 Unconventional aircraft configurations

Over the last five decades, the fuel e�ciency of commercial aircraft has approx-

imately doubled through advancements in technology and design [2]. However, as

Fig. 9.1 shows, this trend has stagnated in recent years, as each aircraft becomes

more optimized and further improvements become more technically challenging to

achieve. This concern is compounded by the fact that air tra�c growth is expected

to outpace e�ciency improvements in the next two decades [99], in the face of rising

fuel costs and growing environmental concerns.

The National Aeronautics and Space Administration (NASA) has identified the

need for new concepts for commercial aircraft that significantly improve e�ciency

and environmental compatibility. To this end, NASA has outlined aggressive targets

for the N+3 (2025) generation of aircraft, including a 71 dB noise reduction, an

80 % reduction in NOx emissions, and a 60 % reduction in fuel consumption over

a mission [100]. These reduction targets are relative to a baseline represented by

the Boeing 737-800, which was first flown in 1997. One approach to achieving these

target metrics is through discipline-specific improvements such as increased use of

composites for reduced structural weight, higher bypass ratios (BPR) for increased

propulsive e�ciency, and improved high-lift systems for reduced noise and drag. On

the other hand, Figure 9.1 suggests that the 50-year-old tube-and-wing design may

103

[Efficiency trends for new commercial jet aircraft. ICCT, 2009]
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The tube-and-wing configuration has been 
perfected over the last 50 years
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Breakthrough improvements require 
unconventional aircraft configurations

Truss-braced wing Blended wing body

Double bubbleJoined wing



Low-fidelity and empirical design tools 
do not adequately model the tradeoffs

Additional wave and 
interference drag

↓
CFD analysis

High aspect-ratio
composite wings

↓
Aeroelastic tailoring

Continuous descent and 
low Mach number flight

↓
Mission analysis



[Kenway, Kennedy, and Martins, AIAA 2014-3274]

Adjoint-based design optimization algorithms 
can accelerate the design process



[Kenway, Kennedy, and Martins, AIAA 2014-3274]

Adjoint-based design optimization algorithms 
can accelerate the design process



The challenge problem:  
How can we design a new configuration while 
considering the impact at the airline level?



We chose to focus on the truss-braced wing

Struts to brace 
the wing

High aspect-
ratio wings

Lighter wing Lower drag



The approach is to find the best design 
that maximizes profit for the airline
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To do this, we perform simultaneous 
allocation-mission-design optimization
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To do this, we perform simultaneous 
allocation-mission-design optimization

One mission analysis 
per airline route

Aerostructural analysis 
and mission analysis 
are coupled…
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To do this, we perform simultaneous 
allocation-mission-design optimization

Aerostructural analysis 
and mission analysis 
are coupled…

… but aerostructural analysis is computationally expensive

One mission analysis 
per airline route



Our proposed solution is  
to use surrogate modeling

We can use a 
surrogate model 
at lower cost  
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Subprojects for Year 1

1. Parallel matrix-free optimizer 

2. Parallel computational framework 

3. Aerostructural modeling and optimization of the TBW

4. Mission and allocation modeling and optimization

5. Uncertainty quantification for multifidelity design
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Parallel numerical optimization



Gradient-free 
optimizerOptimization Methods: Gradient-Free

Genetic algorithms

Example 6.3: Minimization of the Rosenbrock Function Using a Genetic Algorithm

Figure 6.5: Genetic algorithm with bit
representation

Figure 6.6: Genetic algorithm with real number
representation

J.R.R.A.Martins • A Short Course on MDO • http://mdolab.utias.utoronto.ca 231

Nelder-Mead simplex

Example 6.1: Minimization of the Rosenbrock Function Using Nelder–Meade

J.R.R.A.Martins • A Short Course on MDO • http://mdolab.utias.utoronto.ca 214

Optimization Methods: Gradient-Based

Steepest descent (1st order) BFGS (2nd order)
Figure 3.6: Solution path of the steepest descent and conjugate gradient methods

J.R.R.A.Martins • A Short Course on MDO • http://mdolab.utias.utoronto.ca 90

Figure 3.7: Solution path of the modified Newton and BFGS methods

J.R.R.A.Martins • A Short Course on MDO • http://mdolab.utias.utoronto.ca 91

Optimum

Gradient-based 
optimizer

Starting 
point

Optimum

Gradient-based optimization takes  
a more direct route to the optimum



Gradient-based optimization is the only hope 
for large numbers of design variables
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methods reflect in their better ability to find global minimum. As the increasing of problem size, gradient
methods tends toward the local minimum while non-gradient methods can still find the global minimum.
However, consider their performance at high dimension, we cannot take fully use of this advantage.
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The adjoint method computes gradients with 
respect to large numbers of variables efficientlyFrom forward chain rule Solution From reverse chain rule
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Large numbers of  
design variables and 
constraints
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… but the adjoint method cannot handle large 
numbers of variables and constraints simultaneously



Current state-of-the-art optimizers  
do not scale well with problem size…

…they solve the optimality conditions using Newton’s method

This requires the matrices W and A explicitly, which are 
costly to compute for large problems
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We developed an all new algorithm for numerical 
optimization that uses a matrix-free approach

Instead of requiring the matrices explicitly, our optimizer 
requires only matrix-vector products

This saves memory and computational time, enabling the 
solution of very large problems

[Hicken and Dener, SIAM J.Opt., 2015 (submitted)]
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RSNK: Reduced-space Newton—Krylov



We benchmark this new algorithm on an 
aerodynamic shape optimization problem

Figure 2. Baseline CRM wing geometry scaled by its mean aerodynamic chord.

8

drag coefficient


airfoil shapes


lift constraint

moment constraint

volume constraint

thickness constraints

minimize


with respect to


subject to



Previous results with conventional optimizers show 
that this is a challenging problem

[Lyu, Kenway and Martins, 2015]

http://arc.aiaa.org/doi/full/10.2514/1.J053318


A matrix-free interface was developed for our 
CFD solver and adjoint

‣ SUMad (based on SUmb) 

‣ Parallel, finite-volume, cell-centered, 

multiblock solver for RANS equations

‣ Spalart–Allmaras turbulence model

‣ Implemented adjoint using automatic 

differentiation to evaluate partial 
derivatives


‣ Developed both frozen-turbulence 
and full-turbulence adjoint  


‣ New: matrix-free interface

Figure 4: CRM wing-only CFD solution used to generate loads.

8. Generate new set of loads, F< n + 1 > on approximate jig shape. The forces are the same, however,
the positions are updated to the new aerodynamic jig surface location.

9. Generate new FFD file, FFD< n+ 1 >, using the current design variables.

10. Generate new surface file, surface< n + 1 >, by evaluating new surface control point locations from
the optimized FFD shape.

11. Generate new structural wingbox based on the new continuous surface file (surface< n + 1 >) using
pyLayoutGeo and mesh to produce wingbox coarse< n+ 1 >.

12. Check if continuous surface has changed appreciably, if so, increment iteration counter and go to Step
2

Three outer iterations of the above procedure was performed until no noticeable change in successive jig
shapes was observed. The progression of the jig aerodynamic shapes are shown in Figure 7.

8 Verification of Jig Shape
The inverse design procedure described int eh previous section only guarantees that the computed jig shape
is “as close as possible” to the target geometry, in the least squares sense. In this section we present
aerostructural results using the jig configuration to verify that the jig shape does deform into the CRM
wing-only configuration.

A comparison of the upper surface CP contours are given in Figure 8.
The two sets of contours do appear to match very well, although there are very slight di↵erences, even

at the root. The slight changes at the root can be attributed to a slight angle of attack di↵erence in the
aerostructural solution that has been adjusted to match the same lift as the CRM wing-only configuration.
A summary of the performance is given in Table 5.

5

The contribution of the turbulence to the main flow residual is included via the turbulence variable. The frozen-
turbulence assumption can be made by neglecting the turbulence contribution to the main flow. Since @R/@w is a
square matrix, in principle both forward and reverse modes would require similar number of function calls to form the
matrix. However, forward mode is more intuitive and has lower overhead cost and for forming @R/@w, the forward
mode is faster than the reverse mode in practice. @R/@w is stored in transpose form in a block compressed sparse row
matrix format.

I

J

K

a) Euler flux stencil: 13 cells

I

J

K

b) RANS flux stencil: 33 cells
Figure 1. Euler and RANS flux Jacobian stencil

Special care must be taken for the computation of @I/@w with forward mode AD. If the routine to compute
I , which we will assume consists of integrated forces or moments on wall boundary, is simply included with the
residual evaluation, all cells near the surface that influence the force evaluation on the wall would have to be perturbed
independently and the advantage of the graph coloring approach described in Section E would be nullified.

To enable the evaluation of @I/@w simultaneously with @R/@w it is necessary to evaluate individual forces and
moments at each cell, not just the overall sum. Stencils for individual force and moment computations are compact.
For both Euler and RANS cases this force stencil is smaller than the corresponding residual stencil. For the linear
pressure extrapolation wall boundary condition, the Euler force stencil has only two cells: the cell on the surface and
the cell above. The RANS force stencil consists of a 3x3 patch on the surface and one layer above, with a total of
18 cells. Both Euler and RANS force stencil can be packed inside the respective flux Jacobian stencils. Once the
individual forces are resolved, their contribution to the chosen objective, I , is evaluated and the correct contribution
can be added to @I/@w.

4. Computation of @R/@x and @I/@x

The calculations of @R/@x and @I/@x depend on the design variables. For aerodynamic shape optimization, we are
generally interested in geometric design variables, such as airfoil profile, wing twists, etc, and flow condition design
variables, such as Mach number, angle of attack, side-slip angle etc. The partials that involve flow design variables are
relatively straight-forward. Each flow design variables are seeded and forward mode AD is used to obtain the residual
and objective partial derivatives. No coloring scheme is necessary, since only one pass of the residual routine is needed

6



RSNK was shown to be more efficient than 
a state-of-the-art optimizer for large problems

[Dener, Hicken, Kenway, Lyu and Martins, AIAA 2015-1945]



Summary for Subproject 1

Year 1 achievements:

‣ Developed a novel parallel optimizer

‣ Develop a matrix-free RANS CFD adjoint

‣ Demonstrated scaling on a high-fidelity 

aerodynamic shape optimization problem

Next steps:

‣ Perform RANS-based aerodynamic shape 

optimization

‣ Implement inequality constraints

‣ Implement matrix-free aerostructural 

interface
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is dependent on the number of quantities of interest rather than the number of variables. Therefore, for gradient-based
optimization problems with large numbers of design variables, computing total derivatives using the adjoint method is
advantageous. Both direct and adjoint methods have been implemented in a prototype of the computational framework,
and the total derivatives are automatically calculated with the specification of the partial derivatives.

The other important feature of the prototype framework is the ability to hierarchically decompose the problem,
which enables the implementation of different solution strategies. For example, block Gauss–Seidel solvers can be
used on certain parts of the problem while Newton–Krylov solvers are used to solve other parts monolithically. For
large systems, Newton’s method is the only tractable solution method. The lack of robustness of Newton’s method
can be addressed by implementing a line search or trust region method for selecting the sizes of the Newton steps.
Gauss–Seidel methods can be useful by acting as preconditioners, as well as for solving a series of explicit systems.

The basic component of the framework is a mathematical system. A system is defined as a compound system if it
contains subsystems, or an elementary system otherwise. Compound systems can be further classified into serial and
parallel systems. For the mission analysis problem, only serial systems are used, since the problem size is generally
not large enough to possess obvious advantages for parallel computing. Elementary systems can be distinguished
between independent systems, explicit systems, and implicit systems. Independent systems consist of variables that are
not dependent on other variables. Explicit systems include variables that can be determined exactly by an expression
involving only variables from other systems. Implicit systems depend on both variables from within the system as well
as variables from other systems.

The objective here, as motivated by previous sections, is to develop a modular mission analysis tool capable
of performing the proposed simultaneous optimization of aircraft design, airline allocation and flight trajectories.
Therefore, the three driving goals for the development of this tool are: efficiency, robustness, and modularity. Due
to the anticipated large size of the overall problem, a gradient-based optimization scheme must be used to keep the
problem tractable, which results in the need for total derivatives [23]. Many existing tools utilize finite-difference or
complex-step methods to compute such derivatives, but with the anticipated size of the overall coupled optimization
problem, the adjoint method must be used.

Mission

Nonlin: GS
Linear: GS

Flight conditionsB-splines Coupled analysis

Nonlin: Newton
Linear: Krylov

Inputs Outputs

PropulsionHor. equilibriumAerodynamicsVert. equilibrium Fuel weight
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T ! Ẇ Ẇ ! W

Legend
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Figure 2: Hierarchical decomposition of the mission problem in the prototype framework.

The hierarchical structure of the mission analysis problem will now be explained. As shown in Figure 2, the overall
problem is contained within a serial system named mission. Mission contains 5 separate subsystems, and solves them
in sequence using one Gauss–Seidel iteration. The first subsystem is composed of input variables such as altitude
and Mach number control points. These are implemented as independent systems, and are initialized with a single
block Gauss–Seidel iteration. The second subsystem uses these inputs to generate B-spline interpolants, which allow
us to reduce the number of input variables (which are design variables during optimization) while maintaining the
accuracy of the collocation method. The B-spline implementation is similar to the approach taken by Hwang et al.
for a small satellite design optimization problem [20]. The third subsystem takes the parameterized input profiles,
and computes the corresponding flight conditions at each collocation point explicitly. This is done by solving explicit
systems sequentially once using the block Gauss–Seidel solver.

The fourth subsystem contains the nonlinear coupled system of equilibrium equations, as well as the aerodynamic
relations, and the fuel-burn equation. The ordering of subsystems within the coupled analysis block is determined in
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We recently developed an equation that  
unifies the methods for computing derivatives

‣ Finite differences 

‣ Chain rule 

‣ Direct method/adjoint method 

‣ Algorithmic differentiation

By the inverse function theorem, if @R

@u

is invertible at u

⇤, there exists a
local inverse R

�1 defined on an open neighborhood of R(u⇤) in the
codomain. Moreover,
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The Jacobian of the inverse turns out to be equal to the matrix of total
derivatives we are after, so the result is
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This equation unifies all methods for computing the derivatives of a
computational model.
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[Hwang and Martins, AIAAJ, 2013]



Using this theory, we developed a parallel 
framework that computes coupled gradients

Each discipline computes its partial derivatives; 
the framework computes the total derivatives

38
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Each discipline computes its partial derivatives; 
the framework computes the total derivatives
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Each component computes its local derivatives;

the framework computes coupled gradients automatically



The framework uses efficient 
numerical linear algebra

The framework uses efficient 
numerical linear algebra
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Algorithm 5. apply linear [recurs.]

input : (dp, du)
output: dr
scatter du to each subsys.dp

for each subsys do
subsys.apply linear

end

=
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@(p, u)
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du dr

Algorithm 6. solve linear [GS]

input : dr
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rhs � dr

while not converged do
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Algorithm 7. solve linear [Jacobi]
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Algorithm 8. solve linear [Krylov]
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function linear operator(x)
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Preconditioned 
Krylov subspace methods

40The built-in solvers are used extensively

in the mission analysis component

[Hwang and Martins, 2015 (to be submitted)]



This algorithmic framework has been 
implemented in NASA’s OpenMDAO

Several other applications have been handled:


Satellite design and 
operation optimization Wind turbine optimization

[Gray, Hearn, Moore, Hwang, Martins, and Ning, AIAA 2014-2042]



Summary for Subproject 2

Year 1 achievements:

‣ Developed a novel algorithmic framework 

for coupled analysis and gradient 
computation


‣ Implemented framework numerical 
methods in OpenMDAO


‣ Successful spin-offs through OpenMDAO 

Next steps:

‣ Benchmark framework in other problems

‣ Continue supporting OpenMDAO team

The framework uses efficient 
numerical linear algebra

JOHN T. HWANG AND JOAQUIM R. R. A. MARTINS 27

Algorithm 5. apply linear [recurs.]

input : (dp, du)
output: dr
scatter du to each subsys.dp

for each subsys do
subsys.apply linear

end

=

@R

@(p, u)
dp
du dr

Algorithm 6. solve linear [GS]

input : dr
output: du
rhs � dr

while not converged do
for each subsys do

scatter du to subsys.dp

subsys.apply linear

subsys.dr  rhs� subsys.dr

subsys.solve linear

end
end

= �

@R

@u
du dr

@R

@u
du

Algorithm 7. solve linear [Jacobi]

input : dr
output: du
rhs � dr

while not converged do
scatter du to each subsys.dp

for each subsys do
subsys.apply linear

subsys.dr  rhs� subsys.dr

subsys.solve linear

end
end

= �

@R

@u
du dr

@R

@u
du

Algorithm 8. solve linear [Krylov]

input : dr
output: du
rhs dr

function linear operator(x)

dr  x

solve linear

apply linear

y  dr

return y

du krylov(rhs, linear operator)

=

@R

@u ⇠ @R

@u

�1
du dr

JOHN T. HWANG AND JOAQUIM R. R. A. MARTINS 27

Algorithm 5. apply linear [recurs.]

input : (dp, du)
output: dr
scatter du to each subsys.dp

for each subsys do
subsys.apply linear

end

=

@R

@(p, u)
dp
du dr

Algorithm 6. solve linear [GS]

input : dr
output: du
rhs � dr

while not converged do
for each subsys do

scatter du to subsys.dp

subsys.apply linear

subsys.dr  rhs� subsys.dr

subsys.solve linear

end
end

= �

@R

@u
du dr

@R

@u
du

Algorithm 7. solve linear [Jacobi]

input : dr
output: du
rhs � dr

while not converged do
scatter du to each subsys.dp

for each subsys do
subsys.apply linear

subsys.dr  rhs� subsys.dr

subsys.solve linear

end
end

= �

@R

@u
du dr

@R

@u
du

Algorithm 8. solve linear [Krylov]

input : dr
output: du
rhs dr

function linear operator(x)

dr  x

solve linear

apply linear

y  dr

return y

du krylov(rhs, linear operator)

=

@R

@u ⇠ @R

@u

�1
du dr

Block Gauss-Seidel

Preconditioned 
Krylov subspace methods

40

The framework uses efficient 
numerical linear algebra

JOHN T. HWANG AND JOAQUIM R. R. A. MARTINS 27

Algorithm 5. apply linear [recurs.]

input : (dp, du)
output: dr
scatter du to each subsys.dp

for each subsys do
subsys.apply linear

end

=

@R

@(p, u)
dp
du dr

Algorithm 6. solve linear [GS]

input : dr
output: du
rhs � dr

while not converged do
for each subsys do

scatter du to subsys.dp

subsys.apply linear

subsys.dr  rhs� subsys.dr

subsys.solve linear

end
end

= �

@R

@u
du dr

@R

@u
du

Algorithm 7. solve linear [Jacobi]

input : dr
output: du
rhs � dr

while not converged do
scatter du to each subsys.dp

for each subsys do
subsys.apply linear

subsys.dr  rhs� subsys.dr

subsys.solve linear

end
end

= �

@R

@u
du dr

@R

@u
du

Algorithm 8. solve linear [Krylov]

input : dr
output: du
rhs dr

function linear operator(x)

dr  x

solve linear

apply linear

y  dr

return y

du krylov(rhs, linear operator)

=

@R

@u ⇠ @R

@u

�1
du dr

JOHN T. HWANG AND JOAQUIM R. R. A. MARTINS 27

Algorithm 5. apply linear [recurs.]

input : (dp, du)
output: dr
scatter du to each subsys.dp

for each subsys do
subsys.apply linear

end

=

@R

@(p, u)
dp
du dr

Algorithm 6. solve linear [GS]

input : dr
output: du
rhs � dr

while not converged do
for each subsys do

scatter du to subsys.dp

subsys.apply linear

subsys.dr  rhs� subsys.dr

subsys.solve linear

end
end

= �

@R

@u
du dr

@R

@u
du

Algorithm 7. solve linear [Jacobi]

input : dr
output: du
rhs � dr

while not converged do
scatter du to each subsys.dp

for each subsys do
subsys.apply linear

subsys.dr  rhs� subsys.dr

subsys.solve linear

end
end

= �

@R

@u
du dr

@R

@u
du

Algorithm 8. solve linear [Krylov]

input : dr
output: du
rhs dr

function linear operator(x)

dr  x

solve linear

apply linear

y  dr

return y

du krylov(rhs, linear operator)

=

@R

@u ⇠ @R

@u

�1
du dr

Block Gauss-Seidel

Preconditioned 
Krylov subspace methods

40



Optimizer
Aircraft
design

Mission
profiles

Flights
per day

Aerostructural
analysis

Training
points

Aerostructural
surrogate

Lift, drag,
moment

Flight
conditions

Mission
analysis

Fuel burn,
block time

Airline
profit

Allocation
analysis

Subproject 3 
Aerostructural modeling and optimization of 
the truss-braced wing aircraft



To model the TBW, we use GeoMACH, 
which was developed in an earlier NASA effort

GeoMACH models aircraft geometries and structures

using a differentiable parametrization
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To investigate the aerodynamics near the strut, 
we performed Euler-based shape optimization



Shape optimization eliminates the shock 
and reduces the drag by 58%

Initial 
solution

Optimized 
solution
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and reduces the drag by 58%
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We obtained similar results  
with the RANS equations



We also developed a structural model 
for the truss-braced wing using GeoMACH 



Summary for Subproject 3

Year 1 achievements:

‣ Developed geometries for the wing & 

struts and for the full TBW configuration

‣ Performed aerodynamic shape 

optimization to eliminate the shock

‣ Began development of a structural model 

for the TBW 

Next steps:

‣ Perform detailed shape optimization

‣ Perform aerostructural optimization

‣ Develop an aerostructural surrogate 

model
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Subproject 4 
Mission and allocation modeling and optimization



We developed a unique mission analysis tool 
within the parallel framework 

is dependent on the number of quantities of interest rather than the number of variables. Therefore, for gradient-based
optimization problems with large numbers of design variables, computing total derivatives using the adjoint method is
advantageous. Both direct and adjoint methods have been implemented in a prototype of the computational framework,
and the total derivatives are automatically calculated with the specification of the partial derivatives.

The other important feature of the prototype framework is the ability to hierarchically decompose the problem,
which enables the implementation of different solution strategies. For example, block Gauss–Seidel solvers can be
used on certain parts of the problem while Newton–Krylov solvers are used to solve other parts monolithically. For
large systems, Newton’s method is the only tractable solution method. The lack of robustness of Newton’s method
can be addressed by implementing a line search or trust region method for selecting the sizes of the Newton steps.
Gauss–Seidel methods can be useful by acting as preconditioners, as well as for solving a series of explicit systems.

The basic component of the framework is a mathematical system. A system is defined as a compound system if it
contains subsystems, or an elementary system otherwise. Compound systems can be further classified into serial and
parallel systems. For the mission analysis problem, only serial systems are used, since the problem size is generally
not large enough to possess obvious advantages for parallel computing. Elementary systems can be distinguished
between independent systems, explicit systems, and implicit systems. Independent systems consist of variables that are
not dependent on other variables. Explicit systems include variables that can be determined exactly by an expression
involving only variables from other systems. Implicit systems depend on both variables from within the system as well
as variables from other systems.

The objective here, as motivated by previous sections, is to develop a modular mission analysis tool capable
of performing the proposed simultaneous optimization of aircraft design, airline allocation and flight trajectories.
Therefore, the three driving goals for the development of this tool are: efficiency, robustness, and modularity. Due
to the anticipated large size of the overall problem, a gradient-based optimization scheme must be used to keep the
problem tractable, which results in the need for total derivatives [23]. Many existing tools utilize finite-difference or
complex-step methods to compute such derivatives, but with the anticipated size of the overall coupled optimization
problem, the adjoint method must be used.
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Figure 2: Hierarchical decomposition of the mission problem in the prototype framework.

The hierarchical structure of the mission analysis problem will now be explained. As shown in Figure 2, the overall
problem is contained within a serial system named mission. Mission contains 5 separate subsystems, and solves them
in sequence using one Gauss–Seidel iteration. The first subsystem is composed of input variables such as altitude
and Mach number control points. These are implemented as independent systems, and are initialized with a single
block Gauss–Seidel iteration. The second subsystem uses these inputs to generate B-spline interpolants, which allow
us to reduce the number of input variables (which are design variables during optimization) while maintaining the
accuracy of the collocation method. The B-spline implementation is similar to the approach taken by Hwang et al.
for a small satellite design optimization problem [20]. The third subsystem takes the parameterized input profiles,
and computes the corresponding flight conditions at each collocation point explicitly. This is done by solving explicit
systems sequentially once using the block Gauss–Seidel solver.

The fourth subsystem contains the nonlinear coupled system of equilibrium equations, as well as the aerodynamic
relations, and the fuel-burn equation. The ordering of subsystems within the coupled analysis block is determined in
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The framework automatically computes derivatives 
using the adjoint method



altitudes up to 20 km. However, one modification is made to the temperature change near the tropopause at 11 km
altitude. Instead of an abrupt change from a negative slope to a zero slope, a cubic function is fitted to the region to
smoothly vary temperature as altitude is increased from 10.5 km to 11.5 km. The continuity in slope is desirable for
gradient-based optimization, as discontinuities may cause the optimization process to be stuck in a loop. The equation
of the cubic fit is determined to be the following:

T (h) = (2.00 ⇥ 10�11)h3 + (2.59 ⇥ 10�6)h2 � (6.75 ⇥ 10�2)h + 6.20 ⇥ 10�2 (1)

for
10500  h  11500 (2)

Having determined the altitude airspeed and flight conditions, we can now enforce the flight equilibrium equations
at these points, and compute the state of the aircraft. We start by writing out the full flight equilibrium equations:
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where We represents the operating empty weight of the aircraft, Wp represents the weight of the payload carried by
the aircraft, and Wf represents the weight of the fuel carried at a particular time instance. The direction of forces
and the flight angles are shown on Figure 1. As shown on the figure, the flight path angle is represented by �, and
the angle of attack is represented by ↵. �T represents the angle at which the engines are mounted with respect to the
horizon. It is assumed to be small, therefore neglected in our formulation. From these equations, we assume each
of the collocation points to be in a steady flight condition. Although this assumption may not necessarily be valid,
the high-fidelity solvers and the aerodynamic surrogate models used have already made the steady flight assumption,
resulting in the loss of unsteady aerodynamic effects. Therefore, even by including the unsteady terms in the flight
equilibrium equations, we are still not able to model the dynamics accurately. In addition to neglecting the unsteady
terms, we have also substituted in the target values for the lift, drag, and moment coefficients: C̃L, C̃D, C̃M in the
following equations:

Figure 1: Free body diagram of flight equilibrium.
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The flight equilibrium equations are 
solved using a collocation approach
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The mission analysis solves  
the flight equilibrium equations

These target values represent the values required to satisfy the equilibrium equations at the prescribed flight con-
ditions with the current weight estimate. The target values for the three coefficients allow us to solve for the angle of
attack ↵, throttle setting ⌧ , and tail rotation ⌘ implicitly with the following relations:

C̃L � CL(h, M, ↵, ⌘) = 0 (9)

C̃T � CT (h, M, t) = 0 (10)

C̃M � CM (h, M, ↵, ⌘) = 0 (11)

The functions CL, CT , and CM represent the lift, thrust, and pitching moment coefficients, respectively, as cal-
culated by the specified model given the current state of the other variables. By forcing these to be equal to their
respective target values computed from the equilibrium equations, we effectively compute the angle of attack, throttle
setting, and tail rotation angle needed to satisfy the equilibrium equations in a modular manner. A direct approach
would substitute these relations into the equilibrium equations, and utilize callbacks when evaluating and solving
the coupled system, but this would compromise our modularity requirement, and would prevent us from swapping
between aerodynamic solvers and surrogate models easily.

Currently, the aerodynamic relations are solved using a surrogate model with data points generated by a panel
code, Tripan [21]. A kriging model is built with the panel code outputs, which is then interpolated by B-splines for
efficiency [22]. The additional layer of interpolation reduces the evaluation time of the model by an order of magnitude
while incurring a small penalty in accuracy. A similar B-spline approach for interpolating aerodynamic models is used
by Betts and Cramer [19].

The last of the coupled equations is the rate of fuel burn equation:

dWf

dx

=
SFC 1

2⇢v

2
SCT

v cos �

(12)

This ODE must be solved to compute the total weight of the aircraft at each of the collocation points. We have
converted the rate of fuel burn in time to the rate of fuel burn in horizontal distance through the relations provided by
airspeed and flight path angle. Since the amount of fuel carried at the end of the mission is known, and can be chosen
a priori, we can use this as the initial condition for solving the ODE. The approach here is to apply the explicit Euler
scheme starting from the end of the mission, and march backwards in distance to the start of the mission.

B. Numerical Framework

The most important contribution that sets this mission analysis tool apart from existing methods is the idea of utilizing
a computational framework to provide benefits in terms of efficiency and modularity. The use of a computational
framework allows us to uniquely tailor the solution strategy of the overall problem by selectively using different
nonlinear and linear solvers for different blocks within the problem. The framework also automates the computation
of total derivatives required for gradient-based optimization. The overall problem can be expressed as a system of
nonlinear algebraic equations:

R(u) = 0 (13)

Here, the vector u represents all variables within the system, and R(u) represents the algebraic system of equations
that is the unified formulation of any numerical model. The vector u

⇤ which solves R(u) = 0 is defined as the solution
of the overall problem.

The computation of total derivatives can be done efficiently by utilizing the unifying chain rule [23], as shown in
the following equation:

@R

@u

du

dr

= I =
@R

@u

T du

dr

T

(14)

where r represents the vector of outputs provided by the system of equations with some input vector u.

r = R(u) (15)

The unifying chain rule equation is presented by Martins and Hwang [23]. From this equation, the total derivatives
can be computed using either the direct method or the adjoint method. The computational cost of the adjoint method
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elevator deflection to trim the aircraft. The equations are
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where ↵ is the angle of attack and � is the climb or descent angle.

Assuming quasi-steady flight conditions, the terms containing derivatives with

respect to x can be ignored. Dropping these terms and expressing in terms of non-

dimensional coe�cients yields

1

2
⇢v2SC̃L + W cos � � 1

2
⇢v2SC̃T sin ↵ = 0 (7.4)

1

2
⇢v2SC̃T cos ↵ +

1

2
⇢v2SCD + W sin � = 0 (7.5)

C̃M = 0. (7.6)

The system of equations is completed by adding surrogate models for the aerody-

namics and propulsion, which are of the form

C̃L � CL(h, M, ↵, ⌘) = 0 (7.7)

C̃M � CM(h, M, ↵, ⌘) = 0 (7.8)

C̃T � CT (h, M, t) = 0, (7.9)

where the variables with tildes indicate target variables while CL, CD, CM , and CT

are functions representing the aerodynamic or propulsion surrogates.

The fuel weight is computed by solving the ODE,

Ẇf =
{SFC}1

2

⇢v2SCT

v cos �
, (7.10)
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The altitude and Mach profiles can be optimized 
using a B-spline parametrization
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Figure 10: Altitude and Mach Number optimization for a 1000-nautical mile mission.

V. Conclusion

In this study, we have proposed a new mission analysis and trajectory optimization tool. The robustness of the
tool is demonstrated by successfully optimizing missions with ranges varying from 100 to 9000 nautical miles, and
aircraft weights varying from OEW to MTOW. The combination of the proposed tool and the use of a framework
allows for efficient computation of total derivatives required for gradient-based optimization schemes. The mission
analysis results generated using this tool match well with results generated by existing software. Altitude and Mach
profile optimization was demonstrated. A relation between the number of B-spline control points required for an
oscillation-free solution and the range of the mission is also presented. The progress of the proposed tool thus far has
demonstrated its suitability for the eventual use in a simultaneous multidisciplinary optimization problem.
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The remaining 
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computed by 

solving a system 
of equations



Multiple trajectories can be optimized quickly

0

40

Alt (103 ft)

−5

20
Path Angle (deg)

Normalized Range
0

270

Fuel (103 lb)

100 NM mission never 
reaches a steady cruise 

classic cruise-climb result 
appears for longer missions

100 NM

9000 NM

Mission 
Range

more fuel needed for 
longer missions

[Kao, Hwang , Martins, Gray, and Moore, AIAA 2015-0136]



profit


flights/day for each route and a/c

pax/flight for each route and a/c

altitude profiles for each route and a/c


mission profile constraints

route demand constraints

aircraft availability constraints

maximize


with respect to


subject to

The allocation problem seeks  
to maximize profit

IV. Results

This section presents a suite of allocation-mission optimization results obtained using Algorithm 1. We start
by describing the routes and the types of aircraft in the problem we solved, and present 4 results. First, we show
the predicted increase in profit for an airline if it purchases new aircraft instead of existing aircraft. Second, we
show that there is a difference between the results of allocation-only optimization (MILP-a) and allocation-mission
optimization (MINLP-a-m). Next, we explore the presence of local optima in (NLP-a-m) and show that (MINLP-a-m)
is highly sensitive to the starting point. Finally, we discuss the numerical performance of the allocation-mission
analysis and optimization algorithm.

A. The problem

The results in this paper solve a 3-route problem with ranges of roughly 7000 nmi, 5500 nmi, and 2500 nmi. The
routes have been chosen to represent a network with a hub in Newark, New Jersey and the following destinations:
Hong Kong; Kuwait City, Kuwait; and Quito, Ecuador. The routes are summarized in Tab. 1 and shown graphically in
Fig. 4.

Route Newark, New Jersey (EWR) Newark, New Jersey (EWR) Newark, New Jersey (EWR)
Hong Kong (HKG) Kuwait City, Kuwait (KWI) Quito, Ecuador (IQT)

Range [nmi] 6998 5546 2509
Demand 1200 550 700

Table 1: The 3 routes considered in the allocation-mission optimization

.

Figure 4: Map of the cities and the routes (generated using the Great Circle Mapper: www.gcmap.com). Newark, New
Jersey is chosen as the hub.

We consider 6 aircraft types, 4 existing ones and 2 hypothetical next-generation aircraft. The Boeing 737-800
(B737), Boeing 777-200ER (B777), Boeing 747 (B747), and Boeing 787 (B787) have been chosen as the existing
aircraft to cover a variety of design ranges and seating capacities. The two new aircraft are a notional advanced con-
ventional design based on the Common Research Model [46] and a blended wing body concept based on Liebeck [47]
with a reduced seating capacity. The aircraft types are summarized in Tab. 2 with seating capacities shown after apply-
ing an 80 % load factor. Table 2 also shows the 4 allocation-mission optimization problems we solved, representing
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with a reduced seating capacity. The aircraft types are summarized in Tab. 2 with seating capacities shown after apply-
ing an 80 % load factor. Table 2 also shows the 4 allocation-mission optimization problems we solved, representing
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Aircraft Boeing Boeing Boeing Boeing CRM: advanced BWB: blended
737-800 777-200ER 747-400 787-8 conventional wing body

Category Existing Existing Existing Existing New New
Capacity 122 207 294 200 300 400
Scenario
S-base 20 24 24 8
S-CRM 20 24 24 8
S-BWB 20 24 24 8
S-both 20 20 20 8 8

Table 2: The types of aircraft considered in the allocation-mission optimization. The bottom four lines show the
number of each aircraft type available in each of the four scenarios.

different scenarios in which the hypothetical airline chooses to buy different aircraft.
The cost, ticket price and the performance data of the existing aircraft for the different routes in the network are

obtained using the simulation tool FLEET [29, 30]. For the new aircraft, the ticket price, no-fuel direct operating cost
and the indirect operating cost are also obtained from an equivalent aircraft modeled in FLEET. The current model
does not account for airline competition and assumes the ticket prices are fixed across types of aircraft on a given
route.

B. Profit increase with new aircraft

Figure 5 shows the profit after optimization for each of the 4 scenarios. The results agree with intuition because the
CRM and BWB both represent an improvement over the existing aircraft. The CRM design is based on the B777, but
it is assumed to have a larger seating capacity and higher aerodynamic efficiency since it is a next generation aircraft.
The B787 has the range of the CRM but a lower seating capacity, while the B747 has the seating capacity but a lower
range and lower efficiency as it is a much older design. Thus, the S-CRM scenario provides a 192 % improvement in
profit over the baseline S-base, the S-BWB scenario provides a 323 % due to its larger seating capacity, and the S-both
scenario provides a further improvement with 414 % compared to the baseline.
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Figure 5: Comparison of profit for the four scenarios at the solution to (MINLP-a-m). The results show an increase in
profit when the hypothetical airline purchases the next-generation aircraft.
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Allocation-mission optimization yielded 
large profit increases with next-generation aircraft
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Summary for Subproject 4

Year 1 achievements:

‣ Developed an efficient mission analysis & 

optimization tool with analytic derivatives

‣ Implemented allocation-mission optimization

‣ Developed a method for solving the mixed-

integer nonlinear optimization problem

Next steps:

‣ Parallelize the allocation-mission optimization

‣ Solve the problem with larger networks

‣ Perform allocation-mission-design 

optimization

is dependent on the number of quantities of interest rather than the number of variables. Therefore, for gradient-based
optimization problems with large numbers of design variables, computing total derivatives using the adjoint method is
advantageous. Both direct and adjoint methods have been implemented in a prototype of the computational framework,
and the total derivatives are automatically calculated with the specification of the partial derivatives.

The other important feature of the prototype framework is the ability to hierarchically decompose the problem,
which enables the implementation of different solution strategies. For example, block Gauss–Seidel solvers can be
used on certain parts of the problem while Newton–Krylov solvers are used to solve other parts monolithically. For
large systems, Newton’s method is the only tractable solution method. The lack of robustness of Newton’s method
can be addressed by implementing a line search or trust region method for selecting the sizes of the Newton steps.
Gauss–Seidel methods can be useful by acting as preconditioners, as well as for solving a series of explicit systems.

The basic component of the framework is a mathematical system. A system is defined as a compound system if it
contains subsystems, or an elementary system otherwise. Compound systems can be further classified into serial and
parallel systems. For the mission analysis problem, only serial systems are used, since the problem size is generally
not large enough to possess obvious advantages for parallel computing. Elementary systems can be distinguished
between independent systems, explicit systems, and implicit systems. Independent systems consist of variables that are
not dependent on other variables. Explicit systems include variables that can be determined exactly by an expression
involving only variables from other systems. Implicit systems depend on both variables from within the system as well
as variables from other systems.

The objective here, as motivated by previous sections, is to develop a modular mission analysis tool capable
of performing the proposed simultaneous optimization of aircraft design, airline allocation and flight trajectories.
Therefore, the three driving goals for the development of this tool are: efficiency, robustness, and modularity. Due
to the anticipated large size of the overall problem, a gradient-based optimization scheme must be used to keep the
problem tractable, which results in the need for total derivatives [23]. Many existing tools utilize finite-difference or
complex-step methods to compute such derivatives, but with the anticipated size of the overall coupled optimization
problem, the adjoint method must be used.
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Figure 2: Hierarchical decomposition of the mission problem in the prototype framework.

The hierarchical structure of the mission analysis problem will now be explained. As shown in Figure 2, the overall
problem is contained within a serial system named mission. Mission contains 5 separate subsystems, and solves them
in sequence using one Gauss–Seidel iteration. The first subsystem is composed of input variables such as altitude
and Mach number control points. These are implemented as independent systems, and are initialized with a single
block Gauss–Seidel iteration. The second subsystem uses these inputs to generate B-spline interpolants, which allow
us to reduce the number of input variables (which are design variables during optimization) while maintaining the
accuracy of the collocation method. The B-spline implementation is similar to the approach taken by Hwang et al.
for a small satellite design optimization problem [20]. The third subsystem takes the parameterized input profiles,
and computes the corresponding flight conditions at each collocation point explicitly. This is done by solving explicit
systems sequentially once using the block Gauss–Seidel solver.

The fourth subsystem contains the nonlinear coupled system of equilibrium equations, as well as the aerodynamic
relations, and the fuel-burn equation. The ordering of subsystems within the coupled analysis block is determined in
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Subproject 5:  
Uncertainty quantification for multifidelity design



We cast the multidisciplinary system design as  
an estimation problem 



To demonstrate the approach, we solve an 
aircraft sizing problem using TASOPT 

[Drela, 2014]



We focus on quantifying the sensitivities  
to the uncertainty of future engine performance

total temperature at turbine inlet in cruise

overall pressure ratio

Tt4CR

OPR

fuel energy consumption 

per payload-range

PFEI




Our approach to global sensitivity analysis 
yields design insights  

OPR

Tt4CR

There are no interaction terms in this case



The results also provide insight into how we can 
satisfy cost and uncertainty budgets 



Using these tools, we can quantify the tradeoffs 
between cost, standard deviation, and risk 



Summary for Subproject 5

Year 1 achievements:

‣ Developed UQ approach for managing 

risk in early stage aircraft design

‣ Demonstrated approach by quantifying 

effect of engine technology uncertainty 
on fuel burn


Next steps:

‣ Extend UQ approach to consider 

nonlinear interactions

‣ Complete and demonstrate multi fidelity 

approach
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Summary of novel contributions so far

1. A new modular, scalable, and general numerical 
optimization algorithm that handles parallel problems


2. A new parallel, scalable algorithmic framework for 
multidisciplinary analysis and gradient computation 
(now implemented in OpenMDAO)


3. A matrix-free CFD adjoint 

4. An adjoint-based mission analysis and trajectory 

optimization code

5. A method for simultaneously optimizing aircraft 

trajectory and allocation 

6. A framework for performing aircraft design 

optimization under uncertainty
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